Main Article Content
Abstract
One of the goals of National Education is to create cultured human beings and appreciate the diversity of national culture. The approach to mathematics through cultural aspects is offered in ethnomathematics. This ethnomathematics research aims to reveal the mathematical concepts and cultural values inherent in the gate of the Sumenep Jamik Mosque. A qualitative method with an ethnography type was used in this research. Research data were collected through observation, interviews, documentation, and literature studies. The results showed the existence of mathematical concepts in the ornament of the Mosque Jamik Sumenep in fractal geometry, the idea of reflection on the transformation of geometry, ratio, and angle. Also, cultural values include the meaning of the swastika symbol, the T key motif, and the value of cultural acculturation. The findings of this study can be developed in learning tools and become a reference to be applied in ethnomathematics-based learning in the classroom.
Keywords
Article Details
References
- Abdussakir. (2017). Integrasi matematika dan al-Quran.
Akbar, L. A., Alghar, M. Z., Marhayati, & Susanti, E. (2023). The Arithmetic Sequences in Making Traditional Cast Nets in Lombok. Edumatika: Jurnal Riset Pendidikan Matematika, 6(1), 13–29. https://doi.org/10.32939/ejrpm.v6i1.2541
Albanese, V., & Perales, F. J. (2020). Mathematics Conceptions by Teachers from an Ethnomathematical Perspective. Bolema: Boletim de Educação Matemática, 34(66), 1–21. https://doi.org/10.1590/1980-4415v34n66a01
Alghar, M. Z., Cholidiyah, A. C., & Radjak, D. S. (2023). Integrative Mathematics: Mathematical Concepts in Hadiths with the Theme of Uqiyah. West Science Islamic Studies, 1(1), 93–101. https://doi.org/10.58812/wsiss.v1i01.285
Alghar, M. Z., & Marhayati. (2023). Ethnomathematics: Exploration of Fractal Geometry in Gate Ornaments of The Sumenep Jamik Mosque Using The Lindenmayer System. Indonesian Journal of Science and Mathematics Education, 6(3), 311–329. https://doi.org/10.24042/ijsme.v6i3.18219
Alghar, M. Z., Susanti, E., & Marhayati. (2022). Ethnomathematics: Arithmetic Sequence Patterns Of Minangkabau Carving On Singok Gonjong. Jurnal Pendidikan Matematika (Jupitek), 5(2), 145–152. https://doi.org/10.30598/jupitekvol5iss2pp145-152
Alghar, M. Z., Walidah, N. Z., & Marhayati. (2023). Ethnomathematics: The exploration of fractal geometry in Tian Ti Pagoda using the Lindenmayer system. Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, 5(1), 57–69. https://doi.org/10.35316/alifmatika.2023.v5i1.57-69
Atthalibi, F. A., Amiuza, C. B., & Ridjal, A. M. (2016). Semiotika Arsitektur Masjid Jamik Sumenep-Madura. Jurnal Mahasiswa Departemen Arsitektur, 4(2), 1–8.
Barnsley, M. F. (2014). Fractals everywhere. Academic press.
Beer, R. (2004). The encyclopedia of Tibetan symbols and motifs. Serindia Publications.
D’Ambrosio, U. (1985). Ethnomathematics and its place in the history and pedagogy of mathematics. For the learning of Mathematics, 5(1), 44–48.
D’Ambrosio, U. (2015). Mathematical modelling as a strategy for building-up systems of knowledge in different cultural environments. In G. A. Stillma, W. Blum, & M. S. Biembengut (Ed.), Mathematical modelling in education research and practice: cultural, social and cognitive influences (pp. 35–44). Springer. https://doi.org/10.1007/978-3-319-18272-8_2
Dutra, É. D. R., Orey, D. C., & Rosa, M. (2023). Utilizando os jargões da cultura cafeeira como uma ação pedagógica para a etnomodelagem. Journal of Mathematics and Culture, 17(2), 62–80. https://repositorio.ufop.br/handle/123456789/17146
Dye, D. S. (2012). Chinese lattice designs. Courier Corporation.
Fajariyah, L. (2021). Quranic Values On The Jamik Mosque Architecture In Sumenep. Journal of Islamic Architecture, 6(3), 187–195. https://doi.org/10.18860/jia.v6i3.9921
Felbrich, A., Kaiser, G., & Schmotz, C. (2014). The cultural dimension of beliefs: An investigation of future primary teachers’ epistemological beliefs concerning the nature of mathematics in 15 countries. International perspectives on teacher knowledge, beliefs and opportunities to learn: TEDS-M results, 209–229.
Halim, E. A., & Royandi, Y. (2022). Chinese Acculturation of the Regent’s Residence, Keraton Sumenep, Indonesia. Journal of the International Society for the Study of Vernacular Settlements, 9(4), 56–71.
Jesus, L. O. M. de, & Madruga, Z. E. de F. (2023). Educação do Campo nos vieses da Etnomodelagem. Revista Eletrônica de Educação Matemática, 1–23.
Juhari, & Alghar, M. Z. (2021). Modeling Plant Stems Using the Deterministic Lindenmayer System. Journal Cauchy, 6(4), 286–295. https://doi.org/10.18860/ca.v6i4.11591
Lee, S. Y., & Tiong, K. M. (2013). Algorithmic generation of Chinese lattice designs. International Journal of Computer and Communication Engineering, 2(6), 706–710. https://doi.org/10.7763/IJCCE.2013.V2.279
Mohamed, A. M. K., & Mostafa, R. M. (2022). Swastika and Swastika Meander in Coptic Art and Architecture till the Tenth Century. International Journal of Heritage, Tourism and Hospitality, 16(1), 11–25. https://doi.org/10.21608/ijhth.2023.283511
Mulyati, S. (2000). Geometri euclid. Malang: JICA.
Rosa, M., & Orey, D. C. (2019). Ethnomodelling as the art of translating mathematical practices. For the Learning of Mathematics, 39(2), 19–24. https://www.jstor.org/stable/26757466
Rosa, M., & Orey, D. C. (2022). Responsible Subversion and the Importance of Local (Emic) Knowledge in Ethnomathematics. Indonesian Journal of Ethnomathematics, 1(2), 75–88. https://journal.i-mes.org/index.php/ije/article/view/41
Santos, J. dos, & Madruga, Z. E. de F. (2021). Ethnomodelling: An Emic, Ethical, And Dialogue Look For Artisanal Chocolate Production. Humanidades & Inovação, 8(50), 289–296.
Selviana, P. S. (2013). Sejarah Berdirinya Masjid Jamik Sumenep Masa Pemerintahan Pangeran Natakusuma I (Adipati Sumenep XXXI: 1762-1811 M). Jurnal Avatara, 1(3), 440–449.
Shomakhmadov, S. H. (2012). The Features of the Interpretation of Mañgala-Symbols in Buddhist Sanskrit Manuscripts from Central Asia. Manuscripta Orientalia. International Journal for Oriental Manuscript Research, 18(2), 9–23.
Soebari. (1995). Geometri Analit. IKIP Malang.
Spradley, J. P. (1997). Metode etnografi.
Widodo. (2021). Geometri fraktal. Gadjah Mada University Press.
Yao, H. Q., & Peng, Z. G. (2020). Feature Extraction and Redesign of Bronze Geometry Patterns in Shang and Zhou Dynasties of China. International Journal of Engineering Research Technology, 9(2), 267–271. https://doi.org/10.17577/IJERTV9IS020117
Yusmar, F., & Fadilah, R. E. (2023). Analisis Rendahnya Literasi Sains Peserta Didik Indonesia: Hasil PISA dan Faktor Penyebab. LENSA (Lentera Sains): Jurnal Pendidikan IPA, 13(1), 11–19.
Zidan, B. (2020). The Concept and Utilization of Swastika ‘Hooked Cross’ on Islamic Artefacts. Journal of the General Union of Arab Archaeologists, 5(1), 29–51. https://doi.org/10.21608/JGUAA2.2020.18018.1024
References
Akbar, L. A., Alghar, M. Z., Marhayati, & Susanti, E. (2023). The Arithmetic Sequences in Making Traditional Cast Nets in Lombok. Edumatika: Jurnal Riset Pendidikan Matematika, 6(1), 13–29. https://doi.org/10.32939/ejrpm.v6i1.2541
Albanese, V., & Perales, F. J. (2020). Mathematics Conceptions by Teachers from an Ethnomathematical Perspective. Bolema: Boletim de Educação Matemática, 34(66), 1–21. https://doi.org/10.1590/1980-4415v34n66a01
Alghar, M. Z., Cholidiyah, A. C., & Radjak, D. S. (2023). Integrative Mathematics: Mathematical Concepts in Hadiths with the Theme of Uqiyah. West Science Islamic Studies, 1(1), 93–101. https://doi.org/10.58812/wsiss.v1i01.285
Alghar, M. Z., & Marhayati. (2023). Ethnomathematics: Exploration of Fractal Geometry in Gate Ornaments of The Sumenep Jamik Mosque Using The Lindenmayer System. Indonesian Journal of Science and Mathematics Education, 6(3), 311–329. https://doi.org/10.24042/ijsme.v6i3.18219
Alghar, M. Z., Susanti, E., & Marhayati. (2022). Ethnomathematics: Arithmetic Sequence Patterns Of Minangkabau Carving On Singok Gonjong. Jurnal Pendidikan Matematika (Jupitek), 5(2), 145–152. https://doi.org/10.30598/jupitekvol5iss2pp145-152
Alghar, M. Z., Walidah, N. Z., & Marhayati. (2023). Ethnomathematics: The exploration of fractal geometry in Tian Ti Pagoda using the Lindenmayer system. Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, 5(1), 57–69. https://doi.org/10.35316/alifmatika.2023.v5i1.57-69
Atthalibi, F. A., Amiuza, C. B., & Ridjal, A. M. (2016). Semiotika Arsitektur Masjid Jamik Sumenep-Madura. Jurnal Mahasiswa Departemen Arsitektur, 4(2), 1–8.
Barnsley, M. F. (2014). Fractals everywhere. Academic press.
Beer, R. (2004). The encyclopedia of Tibetan symbols and motifs. Serindia Publications.
D’Ambrosio, U. (1985). Ethnomathematics and its place in the history and pedagogy of mathematics. For the learning of Mathematics, 5(1), 44–48.
D’Ambrosio, U. (2015). Mathematical modelling as a strategy for building-up systems of knowledge in different cultural environments. In G. A. Stillma, W. Blum, & M. S. Biembengut (Ed.), Mathematical modelling in education research and practice: cultural, social and cognitive influences (pp. 35–44). Springer. https://doi.org/10.1007/978-3-319-18272-8_2
Dutra, É. D. R., Orey, D. C., & Rosa, M. (2023). Utilizando os jargões da cultura cafeeira como uma ação pedagógica para a etnomodelagem. Journal of Mathematics and Culture, 17(2), 62–80. https://repositorio.ufop.br/handle/123456789/17146
Dye, D. S. (2012). Chinese lattice designs. Courier Corporation.
Fajariyah, L. (2021). Quranic Values On The Jamik Mosque Architecture In Sumenep. Journal of Islamic Architecture, 6(3), 187–195. https://doi.org/10.18860/jia.v6i3.9921
Felbrich, A., Kaiser, G., & Schmotz, C. (2014). The cultural dimension of beliefs: An investigation of future primary teachers’ epistemological beliefs concerning the nature of mathematics in 15 countries. International perspectives on teacher knowledge, beliefs and opportunities to learn: TEDS-M results, 209–229.
Halim, E. A., & Royandi, Y. (2022). Chinese Acculturation of the Regent’s Residence, Keraton Sumenep, Indonesia. Journal of the International Society for the Study of Vernacular Settlements, 9(4), 56–71.
Jesus, L. O. M. de, & Madruga, Z. E. de F. (2023). Educação do Campo nos vieses da Etnomodelagem. Revista Eletrônica de Educação Matemática, 1–23.
Juhari, & Alghar, M. Z. (2021). Modeling Plant Stems Using the Deterministic Lindenmayer System. Journal Cauchy, 6(4), 286–295. https://doi.org/10.18860/ca.v6i4.11591
Lee, S. Y., & Tiong, K. M. (2013). Algorithmic generation of Chinese lattice designs. International Journal of Computer and Communication Engineering, 2(6), 706–710. https://doi.org/10.7763/IJCCE.2013.V2.279
Mohamed, A. M. K., & Mostafa, R. M. (2022). Swastika and Swastika Meander in Coptic Art and Architecture till the Tenth Century. International Journal of Heritage, Tourism and Hospitality, 16(1), 11–25. https://doi.org/10.21608/ijhth.2023.283511
Mulyati, S. (2000). Geometri euclid. Malang: JICA.
Rosa, M., & Orey, D. C. (2019). Ethnomodelling as the art of translating mathematical practices. For the Learning of Mathematics, 39(2), 19–24. https://www.jstor.org/stable/26757466
Rosa, M., & Orey, D. C. (2022). Responsible Subversion and the Importance of Local (Emic) Knowledge in Ethnomathematics. Indonesian Journal of Ethnomathematics, 1(2), 75–88. https://journal.i-mes.org/index.php/ije/article/view/41
Santos, J. dos, & Madruga, Z. E. de F. (2021). Ethnomodelling: An Emic, Ethical, And Dialogue Look For Artisanal Chocolate Production. Humanidades & Inovação, 8(50), 289–296.
Selviana, P. S. (2013). Sejarah Berdirinya Masjid Jamik Sumenep Masa Pemerintahan Pangeran Natakusuma I (Adipati Sumenep XXXI: 1762-1811 M). Jurnal Avatara, 1(3), 440–449.
Shomakhmadov, S. H. (2012). The Features of the Interpretation of Mañgala-Symbols in Buddhist Sanskrit Manuscripts from Central Asia. Manuscripta Orientalia. International Journal for Oriental Manuscript Research, 18(2), 9–23.
Soebari. (1995). Geometri Analit. IKIP Malang.
Spradley, J. P. (1997). Metode etnografi.
Widodo. (2021). Geometri fraktal. Gadjah Mada University Press.
Yao, H. Q., & Peng, Z. G. (2020). Feature Extraction and Redesign of Bronze Geometry Patterns in Shang and Zhou Dynasties of China. International Journal of Engineering Research Technology, 9(2), 267–271. https://doi.org/10.17577/IJERTV9IS020117
Yusmar, F., & Fadilah, R. E. (2023). Analisis Rendahnya Literasi Sains Peserta Didik Indonesia: Hasil PISA dan Faktor Penyebab. LENSA (Lentera Sains): Jurnal Pendidikan IPA, 13(1), 11–19.
Zidan, B. (2020). The Concept and Utilization of Swastika ‘Hooked Cross’ on Islamic Artefacts. Journal of the General Union of Arab Archaeologists, 5(1), 29–51. https://doi.org/10.21608/JGUAA2.2020.18018.1024
